
FACULTY OF ENGINEERING

Creating a Linux bootdisk with a
customised kernel

Operating Systems and Security

Ward Van Heddeghem

January 2, 2008

Contents

1 Introduction 3

1.1 Report set-up . 3

1.2 Required experience . 3

1.3 System setup . 3

2 The Linux operating system 5

2.1 Overview . 5

2.2 Overview of the Linux boot process . 5

2.2.1 Stage 1 boot loader . 6

2.2.2 Stage 2 boot loader . 7

2.2.3 Kernel . 7

2.2.4 Init . 8

2.3 Overview of a basic Linux root file system . 8

3 Compiling a kernel 9

3.1 Overview . 9

3.2 Preparation of your system . 9

3.3 Configuration of the kernel . 10

3.4 Creation of the kernel package . 12

3.5 Installation of the kernel package . 12

3.6 A word on GRUB . 13

3.7 Removal of a kernel package . 14

4 Creating a customised kernel 15

4.1 Overview . 15

4.2 Loadable kernel modules . 15

4.3 A batch script for creating multiple kernel packages 15

4.4 Making space on your file system . 17

5 Creating an initial RAM disk 18

5.1 What’s an initial RAM disk? . 18

5.2 Anatomy of the initrd . 18

5.2.1 Compressed cpio archive file . 18

5.2.2 Loop device . 19

5.3 Manually building a custom initial RAM disk . 19

6 Creating a floppy boot disk 22

1

7 Creating a CD-ROM boot disk 23

7.1 GRUB . 23

7.2 Putting it all together . 23

7.3 Using Innotek Virtualbox . 24

7.4 Testing your bootable image . 25

7.5 Adding a boot menu to GRUB . 26

8 Booting with an initial RAM disk 27

9 Conclusion and further work 28

2

1 Introduction

This report describes how to create a minimal Linux operating system. This document has been created
as part of a project assignment for the Operating Systems & Security course taught at the VUB (2007).

The goal of this project was to get hands-on experience with the act of compiling a Linux kernel and
the creation of a bootable, trimmed-down Linux operating system which is small enough to fit on a
floppy disk (1,44 MB), from here on referred to as boot disk.1 This should give a better insight on

• the file structure of a Linux distribution,

• the core components of the Linux operating system,

• the boot process,

• and an better overall understanding of Linux.

Since so-called HOW-TO documentation on both these subjects (kernel compiling and bootdisk cre-
ation) is available on the internet, this project is by no means a pioneering effort. However, since the
available documentation is often written for a specific Linux distribution and is rather outdated (the
most recent HOW-TOs date from 2003), and given my non-existing experience with kernel compilation,
this task still provided to be interesting and challenging enough to make it an educative experience.

1.1 Report set-up

The result of this project is this document. It is a syntheses of information available on the Internet,
and a lot of experimentation to get this information ported to the Ubuntu 7.10 platform; the Linux
distribution chosen for this project.

Chapter 2 starts with a brief overview of Linux, the Linux boot process, and the Linux file system. All
subsequent chapters have been set up as a walkthrough, providing the reader with detailed instructions
on how to create a minimal boot disk himself. Chapter 3 details how to compile a kernel. Chapter
4 shows how to decrease the kernel size. Chapter 5 instructs on how to create an initial RAM disk.
Chapter 7 discusses how to put everything together to have a bootable CD-ROM. And chapter 8 finally
goes into the details of the boot sequence of the initial RAM disk.

1.2 Required experience

This report assumes that you know what Linux is, what a kernel is and that you are familiar with the
terminal and basic Linux commands such as ls, mount, etc.

1.3 System setup

All of the instructions described on in this report have been performed on Ubuntu 7.10 , a relatively
new Linux distribution which is becoming increasingly popular2.

I have used the template directory structure shown in figure 1 for this project, and it will be used
throughout this report. It is advised to the reader who wants to follow along, to set up the same
directories.

1Because of time constraints, the goal of creating a boot floppy disk had to be abandoned, and has been replaced by
creating a bootable CD-ROM. See section 6.

2According to www.distrowatch.com, it currently (December 2007) ranks in the top 2 of Linux distribution.

3

Description of the folders:

• bdproject - root folder of the project

• bootcd - will contain the contents of the boot disk

• configs - will contain the .config kernel configuration files

• debpackages - will contain the Debian kernel package(s)

• initrd - will contain the contents of the initial RAM disk

• iso - will contain the .iso image file of the boot disk

• scripts - will contain a few scripts

• tmp - for general temporary files

bdproject bootcd

debpackages

initrd

iso

tmp

configs

scripts

Figure 1: Template directory structure

4

2 The Linux operating system

2.1 Overview

This section will very briefly look at the main components of Linux.

Credit: The content of this section is an extract from “Operating System Concepts”[11].

Linux is a version of UNIX that has gained popularity in recent years. In its early days, Linux development
revolved largely around the central operating-system kernel - the core, privileged executive that manages
all system resources and that interacts directly with the computer hardware. We need much more than
this kernel to produce a full operating system of course. It is useful to make a distinction between the
Linux kernel and a Linux system. The Linux kernel is an entirely original piece of software developed
from scratch by the Linux community. The Linux system, as we know it today, includes a multitude
of components, some written from scratch, others borrowed from other development projects, and still
others created in collaboration with other teams.

The basic Linux system is a standard environment for applications and user programming, but it does
not enforce any standard means of managing the available functionality as a whole. As Linux has
matured, a need has arisen for another layer of functionality on top of the linux system. This need has
been met by various Linux distributions. A Linux distribution includes all the standard components
of the Linux system, plus a set of administrative tools to simplify the initial installation and subsequent
upgrading of Linux and to manage installation and removal of other packages in the system. A modern
distribution also typically includes tools for management of file systems, creation and management of
user accounts, administration of networks, web browsers, word processors and so on.

Linux kernel

Linux system

Linux distribution

Figure 2: Core components of a Linux distribution

2.2 Overview of the Linux boot process

Credit: The following text is a summary of the article “Inside the Linux boot process”[6].

When a system is first booted, or is reset, the processor executes code at a well-known location. In a
personal computer (PC), this location is in the basic input/output system (BIOS), which is stored in
flash memory on the motherboard. Because PCs offer so much flexibility, the BIOS must determine
which devices are candidates for boot.

When a boot device is found, the first-stage boot loader is loaded into RAM and executed. This
boot loader is less than 512 bytes in length (a single sector), and its job is to load the second-stage
boot loader.

When the second-stage boot loader is in RAM and executing, a splash screen is commonly displayed,
and the Linux kernel and an optional initial RAM disk (temporary root file system) are loaded into
memory. When the images are loaded, the second-stage boot loader passes control to the kernel
and the kernel is decompressed and initialised. At this stage, the kernel checks the system hardware,
enumerates the attached hardware devices, mounts the root device, and then loads the necessary kernel

5

System Startup BIOS / Boot monitor

Power-up �

or Reset

Operation

Master Boot Record

LILO, GRUB, etc

Linux

User space

Stage 1 bootloader

Stage 2 bootloader

Kernel

Init

Figure 3: The 20,000-foot view of the Linux boot process

modules. When complete, the first user-space program (init) starts, and high-level system initialisation
is performed.

That’s Linux boot in a nutshell. Now let’s dig in a little further and explore some of the details of the
Linux boot process.

2.2.1 Stage 1 boot loader

446�
bytes

Master boot record

Partition 1

Bootloader

Partition table

Magic Number

Partition�
flag Start CHS End CHS Start LBA SizePartition�

byte

Partition 2

Partition 3

Partition 4

64�
bytes

2�
bytes

Figure 4: Anatomy of the MBR

The primary boot loader that resides in the MBR is a 512-byte image containing both program code and
a small partition table (see figure 4). The first 446 bytes are the primary boot loader, which contains
both executable code and error message text. The next sixty-four bytes are the partition table, which
contains a record for each of four partitions (sixteen bytes each). The MBR ends with two bytes that
are defined as the magic number (0xAA55). The magic number serves as a validation check of the
MBR.

6

The job of the primary boot loader is to find and load the secondary boot loader (stage 2). It does
this by looking through the partition table for an active partition. When it finds an active partition, it
scans the remaining partitions in the table to ensure that they’re all inactive. When this is verified, the
active partition’s boot record is read from the device into RAM and executed.

2.2.2 Stage 2 boot loader

The secondary, or second-stage, boot loader could be more aptly called the kernel loader. The task at
this stage is to load the Linux kernel and optional initial RAM disk.

The first- and second-stage boot loaders combined are called Linux Loader (LILO) or GRand Unified
Bootloader (GRUB) in the x86 PC environment. Because LILO has some disadvantages that were
corrected in GRUB, let’s look into GRUB.

The great thing about GRUB is that it includes knowledge of Linux file systems. Instead of using raw
sectors on the disk, as LILO does, GRUB can load a Linux kernel from an ext2 or ext3 file system. It does
this by making the two-stage boot loader into a three-stage boot loader. Stage 1 (MBR) boots a stage
1.5 boot loader that understands the particular file system containing the Linux kernel image. Examples
include reiserfs_stage1_5 (to load from a Reiser journaling file system) or e2fs_stage1_5 (to load
from an ext2 or ext3 file system). When the stage 1.5 boot loader is loaded and running, the stage 2
boot loader can be loaded.

The /boot/grub directory contains the stage1, stage1.5, and stage2 boot loaders, as well as a number
of alternate loaders (for example, CD-ROMs may use the iso9660_stage_1_5).

With stage 2 loaded, GRUB can, upon request, display a list of available kernels (this list is defined in
/boot/grub/menu.lst). You can select a kernel and even amend it with additional kernel parameters.
Optionally, you can use a command-line shell for greater manual control over the boot process.

With the second-stage boot loader in memory, the file system is consulted, and the default kernel image
and initrd image are loaded into memory. With the images ready, the stage 2 boot loader invokes the
kernel image.

2.2.3 Kernel

With the kernel image in memory and control given from the stage 2 boot loader, the kernel stage
begins. The kernel image isn’t so much an executable kernel, but a compressed kernel image. Typically
this is a zImage (compressed image, less than 512KB) or a bzImage (big compressed image, greater
than 512KB), that has been previously compressed with zlib. At the head of this kernel image is a
routine that does some minimal amount of hardware setup and then decompresses the kernel contained
within the kernel image and places it into high memory. If an initial RAM disk image is present, this
routine moves it into memory and notes it for later use. The routine then calls the kernel and the kernel
boot begins.

During the boot of the kernel, the initial-RAM disk (initrd) that was loaded into memory by the
stage 2 boot loader is copied into RAM and mounted. This initrd serves as a temporary root file system
in RAM and allows the kernel to fully boot without having to mount any physical disks. Since the
necessary modules needed to interface with peripherals can be part of the initrd, the kernel can be very
small, but still support a large number of possible hardware configurations. After the kernel is booted,
the root file system is pivoted where the initrd root file system is unmounted and the real root file
system is mounted.

The initrd function allows you to create a small Linux kernel with drivers compiled as loadable modules.
These loadable modules give the kernel the means to access disks and the file systems on those disks,
as well as drivers for other hardware assets. Because the root file system is a file system on a disk, the
initrd function provides a means of bootstrapping to gain access to the disk and mount the real root
file system. In an embedded target without a hard disk, the initrd can be the final root file system, or
the final root file system can be mounted via the Network File System (NFS).

7

Hardware setup

Compressed kernel

Setup routine

Decompress kernel

Move initrd into memory

Call kernel

< 512 KB: zImage�

> 512 KB: bzImage

Figure 5: Kernel structure

2.2.4 Init

After the kernel is booted and initialised, the kernel starts the first user-space application. This is the
first program invoked that is compiled with the standard C library. Prior to this point in the process,
no standard C applications have been executed.

In a desktop Linux system, the first application started is commonly /sbin/init. But it need not be.
Rarely do embedded systems require the extensive initialisation provided by init (as configured through
/etc/inittab). In many cases, you can invoke a simple shell script that starts the necessary embedded
applications. 3

2.3 Overview of a basic Linux root file system

Credit: This chapter is based on the “The Linux Bootdisk HOW-TO”[7].

Since the standard Linux directory tree is extensive and not all parts are completely relevant for this
project, I will limit this section to an overview of a minimum set of directories needed to support a bare
Linux system. For a more detailed discussion on the standard Linux directory tree, see [9].

The following is a reasonable minimum set of directories for the root file system:

• /dev - Device files, required to perform I/O

• /proc - Directory stub required by the proc file system (information about processes)

• /sys - Pseudo file system, providing devices and driver info from kernel to userspace

• /etc - System configuration files

• /sbin - Critical system binaries

• /bin - Essential binaries considered part of the system

• /lib - Shared libraries to provide run-time support

• /usr - Additional utilities and applications

3Ubuntu, from version 6.10 and onward, no longer uses init to manage its services during start-up or shutdown of
the system. Instead, it uses ’upstart’ as an event-based replacement for the traditional sysvinit utility that is common to
Linux-based operating system. See http://upstart.ubuntu.com/

8

http://upstart.ubuntu.com/

3 Compiling a kernel

3.1 Overview

The default approach to compiling a kernel is using the commands shown in listing 1.

Listing 1: Default approach to kernel compiling

make dep

make clean

make bzImage

make modules

make modules_install

make install

We will not go down this route, since Debian-based distributions, such as Ubuntu 7.10, provide the
make-kpkg command (make kernel package), which simplifies kernel compilation and installation. The
result of this will be a Debian installation package (extension .deb) which contains our new kernel and
all necessary support files (modules, initrd, etc.). This installation package can than easily be installed
through the command dpkg -i (Debian package, installation).

The general steps to be taken for creating and installing a customised kernel are as follows:

1. preparation of your system (installation of required software, and kernel source)

2. configuration of the kernel

3. creation of the kernel package, this comprises kernel compilation and (optionally) module com-
pilation

4. installation of the kernel package

In the following sections, we will look into the details of each step.

3.2 Preparation of your system

Credit: The following text has been largely taken (and slightly adapted) from the article “How to
Customise your Ubuntu kernel”[5].

A default Ubuntu 7.10 installation does not come installed with all software that is required for kernel
compilation. Missing parts include the Linux kernel source code.

However, before you can start, you need to figure out what kernel version you are currently running.
To do so, you can use the command uname -r, which prints system information (the -r option prints
only the kernel release):

Listing 2: Looking up the current kernel version

\$ uname -r

2.6.22 -14 - generic

\$ uname -a

Linux mango 2.6.22 -14 - generic #1 SMP Sun Oct 14 23:05:12 GMT 2007 i686 GNU/Linux

The listing 2 shows that I am running the 2.6.22-14 kernel. In the next commands, you have to
substitute your kernel number for whatever kernel number you are running.

Now you need to install the linux source for your kernel. You also need to install the ncurses library
and some other tools to help you compile. The ncursus library provides a set of subroutines for handling
navigation on a terminal screen using the cursors.

Before doing so, make sure that you have a working connection to the internet and that downloading
source code has been checked (System > Administration > Software Sources \ Ubuntu Software).

9

Listing 3: Installing the required packages

$ sudo apt -get install linux -source -2.6.22

$ sudo apt -get install kernel -package

$ sudo apt -get install libncurses5 -dev

$ sudo apt -get install fakeroot

If you are curious where the Linux source gets installed to, you can use the dpkg -L command to tell
you the files within a package:

Listing 4: Finding out package installation folders

$ dpkg -L linux -source -2.6.22

/.

/usr

/usr/src

/usr/src/linux -source -2.6.22. tar.bz2

/usr/share

[trimmed]

You can see that the source has been installed to the /usr/src directory in a zipped file.

To make things easier, we’ll put ourselves in root mode by using sudo to open a new shell.

Listing 5: Opening a root shell

$ sudo /bin/bash

Now change directory into the source location so that you can install.

Listing 6: Extracting the kernel source

cd /usr/src

bunzip2 linux -source -2.6.22. tar.bz2

tar xvf linux -source -2.6.22. tar

ln -s linux -source -2.6.22 linux

And finally, make a copy of your existing kernel configuration to use for the custom compile process.

Listing 7: Copying the existing kernel configuration file

cp /boot/config -2.6.22.14 - generic /usr/src/linux/. config

You are now ready to customise your kernel configuration file.

3.3 Configuration of the kernel

Credit: The following text has been largely taken (and slightly adapted) from the article “How to
Customise your Ubuntu kernel”[5].

The configuration of the kernel has to be done by altering the file .config which is located under
/usr/src/linux. There are several ways to do this. We will use the command make menuconfig,
which has to be executed while in /usr/src/linux. When we have run the mentioned command, and
altered the kernel configuration, the result will be that the .config has been updated. This file will
then later be used as an input for the compilation process.

Navigate to the linux source folder and launch the utility (make menuconfig) that will let you customise
the kernel:

Listing 8: Launching the configuration utility

cd /usr/src/linux

make menuconfig

10

Figure 6: Loading an alternate configuration file

First, go down to Load an Alternate Configuration File, and load the .config file. (just hit
enter)

Now that you are inside the utility, you can set the options for your custom kernel. Navigation is pretty
simple, there’s a legend at the top if you get lost. For example, select Networking and hit the Enter
key to go down into that category. See 7.

Figure 7: Selecting Networking

You will now get a list of available support for your kernel. See figure 8. The symbol to the left of
the line indicates wether the support will be built-in to the kernel (indicated by an [*]), wether it
will be available as a kernel module (indicated by an [M]), or whether it will not be available at all
(indicated by []). For example, in figure 8, Amateur Radio Support will be part of the kernel, and
thus increase the kernel size. IrDA (infrared) subsystem support will be available as a kernel module,
having no impact on the kernel size. An arrow (--->) to the right of the line indicates a submenu. If
a checkbox is present on such a line, you can disable support for all entries in the subsystem.

Figure 8: Amateur radio support

By pressing the h or ? key, you can see the help for that particular item. See figure 9.

11

Figure 9: Help on “Amateur Radio support”

Hit Esc to exit the help screen, and then hit N to exclude amateur radio support from your kernel.

When you are finished making whatever choices you want, hit Exit and save the configuration when
prompted.

Now you have a configuration ready for compile.

3.4 Creation of the kernel package

Credit: The following text has been largely taken (and slightly adapted) from the article “How to
Customise your Ubuntu kernel”[5].

Before starting kernel compilation, you have to execute make-kpkg clean to make sure that your
system is ready for the compile. This will remove all files in the kernel source directory created during
a previous package creation/kernel build. Once this has been done, we can actually compile the kernel
and create the kernel package using the command make-kpkg together with the appropriate options.

NOTE: The kernel package creation may take a long time, depending on your system and the selected
configuration. As an example, my initial kernel compilation took roughly 3 hours (on an Athlon XP
2000) and 1.5 hours under Parallels on a MacBook.

Listing 9: Kernel package creation

make -kpkg clean

fakeroot make -kpkg -initrd -append -to -version=-customt1 kernel_image

kernel_headers

This process will create two .deb files in /usr/src that contain the kernel. The linux-image**** file
is the actual kernel image, and the other file (linux-headers****) contains the headers included in
the kernel.

The fakeroot fakes root privileges for file manipulations. It is not strictly necessary to use it when
you are already logged in as root, but it would be usefull if you had made yourself part of the src
group. The -initrd option will make sure the kernel supports initial RAM disk loading (more on this
later). The -append-to-version allows to specify a string to appended to the kernel name, in our
case “customt1” (“t1” stands for “test 1”). The targets kernel_image and kernel_headers tell the
make-kpkg command to produce a kernel package and a headers package.

3.5 Installation of the kernel package

Credit: The following text has been largely taken (and slightly adapted) from the article “How to
Customise your Ubuntu kernel”[5].

12

You can install both created .deb files with the command dpkg. The filenames will probably be different
on your system.

NOTE: Please note that when you run these next commands, this will set the new kernel as the new
default kernel. This could break things! If your machine doesn’t boot, you can hit Esc at the GRUB
loading menu, and select your old kernel. You can then disable the kernel in /boot/grub/menu.lst or
try and compile again.

Listing 10: Installation of the kernel packages

dpkg -i linux -image -2.6.22.9 - customt1_2 .6.22.9 - customt1 -10.00. Custom_i386.deb

dpkg -i linux -headers -2.6.22.9 - customt1_2 .6.22.9 - customt1 -10.00. Custom_i386.deb

You can now reboot your machine. If everything works, you should be running your new custom kernel.
You can check this by using uname. The exact number might be different on your machine.

Listing 11: Checking the kernel version packages

$ uname -r

$ 2.6.17.14 - customt1

The kernel image can now be found in the /boot directory. It will be named vmlinuz-2.6.22.9-customt1.
As you can see, the custom string that you have specified with the make-kpkg command is appended to
the kernel file name. In the same directory you will also find the initial RAM disk (initrd.img-2.6.22.9-customt1)
and your kernel configuration file (config-2.6.22.9-customt1).

3.6 A word on GRUB

If your Ubuntu 7.10 OS is installed as part of a dual-boot configuration, by installing the kernel package
an entry will have been added to the GRUB boot menu. This allows you to choose whether you want
to boot either your original kernel, or the kernel you have just installed. See figure 10.

Figure 10: Choosing which kernel to boot in the GRUB menu

However, if Ubuntu 7.10 is installed as a standalone OS, or if you are experimenting inside a virtual
machine, then the GRUB menu is not visible be default. To enable the GRUB boot menu open GRUB’s
menu.lst file for editing.

Listing 12: Opening the GRUB menu.lst file

$ cd /boot/grub

$ sudo gedit menu.lst

With menu.lst open, comment out the line hiddenmenu by preceding it with a #. Also, increase the
timeout to a more reasonable value, like 10 seconds. The result is visible in listing 13.

13

Listing 13: Editing the GRUB menu.lst file to show the menu

...

timeout sec

Set a timeout , in SEC seconds , before automatically booting the default entry

(normally the first entry defined).

timeout 10

hiddenmenu

Hides the menu by default (press ESC to see the menu)

hiddenmenu

...

3.7 Removal of a kernel package

The advantage of creating kernel packages with make-kpkg, as opposed to compiling the kernel using
the make commands mentioned in chapter 3.1, is that it is very easy to install and uninstall kernels and
all related files (modules etc.).

To uninstall a kernel package, you have two options:

• The command apt-get remove, followed by the package name. apt-get remove will leave
configuration files for the package on your system. A configuration file is defined as any file you
might have edited in order to customise the program for your system or your preferences. This
way, if you later reinstall the package, you won’t have to set everything up a second time.

• However, you might want to erase the configuration files too, so apt-get also provides a purge
option. apt-get purge will permanently delete every last file associated with the specified
package.

Listing 14: Removal of a kernel package

$ sudo apt -get remove linux -image -2.6.22.9 - customt1

$ sudo apt -get purge linux -image -2.6.22.9 - customt1

NOTE: Debian based Linux distributions provide a couple of tools to manage packages. We have used
dpkg to install or kernel package in chapter 3.5. We have used apt-get to remove a package. We
could also have used the command dpkg to remove packages. For more information on the Debian
package management system and the different tools, see [2] and [12].

14

4 Creating a customised kernel

4.1 Overview

The previous chapter showed the procedure of creating a new kernel with - by way of an example -
amateur radio support removed. For the purpose of this project, the goal is of course to remove as
much as possible from the kernel in order to make the kernel size small enough to fit on a floppy disk.
Since the floppy disk will not only contain the kernel image, but also some additional files, the kernel
size must of course be smaller than 1.44 MB. Just how small can only be calculated once we have
created all the additional files (i.e., the initial RAM disk image and the GRUB files).

This chapter will provide some tricks and tools to aid in experimenting with kernel creation. To this
end, since it can be tedious to experiment with kernel package creation because of the long waiting
times, I will provide a script that you can run overnight. This script allows you to create multiple kernel
packages in one go, based on several configuration files that you should prepare before starting the
script.

You might also notice that creating the kernel packages can consume a lot of disk space. If you are on
a small partition, at the end of this chapter I will give a few tips on cleaning up your disk.

4.2 Loadable kernel modules

Since Linux kernel version 1.2, loadable kernel modules are supported. Loadable kernel modules
are pieces of code that can be loaded and unloaded into the kernel upon demand. They extend the
functionality of the kernel without the need to reboot the system. For example, one type of module is
the device driver, which allows the kernel to access hardware connected to the system. Loadable kernel
modules can be loaded automatically by the kernel when needed.

Support for kernel modules however, can be enabled or disabled in the kernel through the configuration
file (option Loadable module support --->).

Figure 11: Loadable kernel modules support options

When support for loadable kernel modules is enabled, all items marked with [M] will be compiled
as a module. When the Debian kernel package is installed, these modules are installed in the folder
/lib/modules/.

When support for loadable kernel modules is disabled, all items marked with [M] will automatically
toggle to [*], resulting in an inclusion of these items in the kernel. Take note that this will increase
the size of your kernel.

4.3 A batch script for creating multiple kernel packages

Depending on the speed of your system and the kernel configuration options selected, kernel package
creation may take a lot of time. On my system, the first kernel package creation took me 3 hours! This
can make it inconvenient to experiment with different configuration options. Therefore, I have created
a simple bash script4 named mkmultikernel.sh which allows to compile and create multiple kernel

4For a good introduction to bash scripting, see the article “Bash Shell Programming in Linux”[1].

15

packages in one go. You could start the script in the evening and have all your .deb packages ready in
the morning.

Listing 15: Utility (mkmultikernel.sh) to create multiple kernel packages

#!/ bin/bash

Do a multiple kernel compile

* Configure $CONFIGS_TO_PROCESS to contain the required config file suffixes

* Config files should be located in $CONFIG_DIR

and files should be named configt1 , configt2 , configt3 , ...

with t1 , t2 , ... the suffixes as specified in $CONFIGS_TO_PROCESS

* The resulting debian packages (*.deb) will be moved to $STORE_DIR

#Check if root

if ["$(id -u)" != "0"]; then

echo "This script must be run as root"

exit 1

fi

#Init

CONFIGS_TO_PROCESS ="t15 t16" #config files suffixes , modify this !

CONFIG_DIR =/home/ward/bdproject/configs #config files location , modify this !

STORE_DIR =/home/ward/bdproject/debpackages #where to move the packages to, modify

this !

LOGFILE =/home/ward/bdproject/build.log #location of log file , modify this !

DATEOUTPUT ="date +%F%t%R:%S%t"

#Do all different compiles

for fn in $CONFIGS_TO_PROCESS; do

echo " " >> ${LOGFILE}

echo " " >> ${LOGFILE}

echo "$(${DATEOUTPUT }) Starting for $fn ..." >> ${LOGFILE}

echo "$(${DATEOUTPUT }) Starting for $fn ..."

#Prepare and clean up

echo "$(${DATEOUTPUT }) Cleaning ..." >> ${LOGFILE}

echo "$(${DATEOUTPUT }) Cleaning ..."

cd /usr/src/linux

make -kpkg clean

#Fetch correct config file

echo "$(${DATEOUTPUT }) Copy config file config$fn ..." >> ${LOGFILE}

echo "$(${DATEOUTPUT }) Copy config file config$fn ..."

rm /usr/src/linux/. config

cp $CONFIG_DIR/config$fn /usr/src/linux/. config

#compile

echo "$(${DATEOUTPUT }) Compile ..." >> ${LOGFILE}

echo "$(${DATEOUTPUT }) Compile ..."

fakeroot make -kpkg -initrd -append -to-version=-custom$fn kernel_image

kernel_headers

#show folder content after compile

echo "$(${DATEOUTPUT }) Folder content :" >> ${LOGFILE}

echo "$(${DATEOUTPUT }) Folder content :"

cd /usr/src

echo "$(ls -lh)" >> ${LOGFILE}

#move to other location

echo "$(${DATEOUTPUT }) Move deb packages ..." >> ${LOGFILE}

echo "$(${DATEOUTPUT }) Move deb packages ..."

mkdir $STORE_DIR/$fn

mv /usr/src/*$fn*.deb $STORE_DIR/$fn

done

exit

16

Before you can run the script, you will have to create different .config files with your desired kernel con-
figuration, as described in chapter 3. Each time you have created a .config file, copy it to the configs
folder and rename it to .configtx where x can be any number, e.g. .configt9, configt10, configt11,
etc.

You need to specify the location of the config files by modifying the variable CONFIG_DIR in the script.
The config files to process have to be specified in the CONFIGS_TO_PROCESS variable. The created
debian packages will be moved to the folder specified in STORE_DIR. And finally, a log file will be
created as specified in LOGFILE. Make sure to adjust all four mentioned variables as required.

NOTE: Since the size of the created kernel packages can be large, make sure you have enough room
on the disk where the packages will be moved to. For some tips on freeing up space on your file system,
see chapter 4.4.

Save the content of the adjusted script in a file called mkmultikernel.sh and place it in a scripts
folder. Make the file executable using the command chmod in the folder where you have saved the
script. To start the script, enter sudo ./mkmultikernel.sh.

Listing 16: Starting the mkmultikernel script

$ cd ~/ bdproject/scripts

$ chmod +x mkmultikernel.sh

$ sudo ./ mkmultikernel.sh

The script will, for each of your config files, first clean up any garbage left over from a previous
compilation, fetch one of your config files, use it to create a kernel package and move the package to
the location you specified.

You can then install the desired kernel package as described in chapter 3.5.

4.4 Making space on your file system

Creating multiple kernels might consume quite some space on your file system. The following tips might
help you to regain some of that space:

• Remove the tar source file. When installing the source files in section 3.2, the linux-source-2.6.22.9.tar
file is not removed automatically. Since it can be quite large, you might want to remove it.

• Uninstall kernel packages that you no longer require. See chapter 3.7. Make sure to use the
purge option.

• Clear the local cache of your debian packages. When you install software on your system,
generally the appropriate installation packages are fetched from the Internet. Your system keeps
a local copy of these installation packages, which might grow to a substantial amount after a
certain amount of time. To clear this local cache, type apt-get clean at the command prompt.
This clears out the local repository of retrieved package files. It removes everything but the lock
file from /var/cache/apt/archives/ and /var/cache/apt/archives/partial/.

• Empty your ’deleted items’. Of course, do not forget to empty your ’deleted items’ folder on
your desktop.

17

5 Creating an initial RAM disk

Credit: The following text is largely taken from the excellent article “Linux initial RAM disk (initrd)
overview”[8]. I have made some slight changes to make it fit this project.

5.1 What’s an initial RAM disk?

The initial RAM disk (initrd) is an initial (temporary) root file system that is mounted prior to when
the real root file system is available. The initrd is bound to the kernel and loaded as part of the kernel
boot procedure. The kernel then mounts this initrd as part of the two-stage boot process to load the
modules to make the real file systems available and get at the real root file system.

The initrd contains a minimal set of directories and executables to achieve this, such as the insmod
tool to install kernel modules into the kernel.

In the case of desktop or server Linux systems, the initrd is a transient file system. Its lifetime is short,
only serving as a bridge to the real root file system. In embedded systems with no mutable storage,
the initrd is the permanent root file system. The latter is the approach that we will use in this report.

5.2 Anatomy of the initrd

The initrd image contains the necessary executables and system files to support the second-stage boot
of a Linux system.

The method for creating the initial RAM disk can vary. It can be constructed using the loop device
or as a compressed cpio archive file. Since the initial RAM disk that is created by the make-kpkg
used in chapter 3.4 is a compressed cpio archive file, we will first have a look at this. The initial RAM
disk that we will create however, will use the loop device technique.

5.2.1 Compressed cpio archive file

To inspect the contents of a cpio archive, use the commands listed in listing 17. Note that even if your
initrd image file does not end with the .gz suffix, it’s a compressed file, and you can add the .gz suffix
to gunzip it.

Listing 17: Extracting the initrd (compressed cpio archive file)

cd ~/ bdproject

mkdir tmp

cd tmp

cp /boot/initrd.img -2.6.22.9 - customt1 initrd.img.gz

gunzip initrd.img.gz

cpio -i --make -directories < initrd.img

The result is a small root file system, as shown in listing 18. The small, but necessary, set of applications
are present in the various directories.

Listing 18: Default Linux initrd directory structure

ls -al

total 13612

drwxr -xr-x 11 ward ward 4096 2007 -12 -15 21:42 .

drwxr -xr-x 4 ward ward 4096 2007 -12 -15 21:41 ..

drwxr -xr-x 2 ward ward 4096 2007 -12 -15 21:42 bin

drwxr -xr-x 3 ward ward 4096 2007 -12 -15 21:42 conf

drwxr -xr-x 6 ward ward 4096 2007 -12 -15 21:42 etc

-rwxr -xr-x 1 ward ward 3295 2007 -12 -15 21:42 init

-rw-r--r-- 1 ward ward 13867008 2007 -12 -15 21:41 initrd.img

drwxr -xr-x 5 ward ward 4096 2007 -12 -15 21:42 lib

18

drwxr -xr-x 2 ward ward 4096 2007 -12 -15 21:42 modules

drwxr -xr-x 2 ward ward 4096 2007 -12 -15 21:42 sbin

drwxr -xr-x 12 ward ward 4096 2007 -12 -15 21:42 scripts

drwxr -xr-x 3 ward ward 4096 2007 -12 -15 21:42 usr

drwxr -xr-x 3 ward ward 4096 2007 -12 -15 21:42 var

#

Of interest in listing 18 is the init file at the root. This file, like the traditional Linux boot process, is
invoked when the initrd image is decompressed into the RAM disk.

5.2.2 Loop device

The loop device is a device driver that allows you to mount a file as a block device and then inter-
pret the file system it represents. Support for the loop device may or may not be present in your
kernel, but you can enable it through the kernel’s configuration tool (make menuconfig) by select-
ing Device Drivers > Block Devices > Loopback Device Support. In the Ubuntu 7.10 kernel,
support is by default build-in.

Had the initrd image been created using a loop device, you can can inspect the loop device as shown
in listing 19 (your initrd file name will vary).

Listing 19: Extracting the initrd (loop device)

cd ~/ bdproject

mkdir tmp

cd tmp

cp /boot/initrd.img.gz .

gunzip initrd.img.gz

mount -t ext -o loop initrd.img /mnt/initrd

ls -la /mnt/initrd

You can now inspect the /mnt/initrd subdirectory for the contents of the initrd. Again, note that
even if your initrd image file does not end with the .gz suffix, it’s a compressed file, and you can add
the .gz suffix to gunzip it.

5.3 Manually building a custom initial RAM disk

An initrd is automatically created when you created your kernel package. Upon installation of the kernel
package, the initrd file is installed in the /boot folder. We have seen above how you can inspect the
contents of the created initrd file.

In this report we will create our initrd from the ground up however; and it will serve as the permanent
root file system. Listing 20 shows how to create an initrd image.

Listing 20: Utility (mkird.sh) to create a custom initrd

#!/ bin/bash

Housekeeping ...

rm -f /tmp/ramdisk.img

rm -f /tmp/ramdisk.img.gz

rm -fr /mnt/initrd

Ramdisk Constants

RDSIZE =4000

BLKSIZE =1024

Create an empty ramdisk image

dd if=/dev/zero of=/tmp/ramdisk.img bs=$BLKSIZE count=$RDSIZE

Make it an ext2 mountable file system

/sbin/mke2fs -F -m 0 -b $BLKSIZE /tmp/ramdisk.img $RDSIZE

19

Mount it so that we can populate

mkdir /mnt/initrd

mount /tmp/ramdisk.img /mnt/initrd -t ext2 -o loop=/dev/loop0

Populate the filesystem (subdirectories)

mkdir /mnt/initrd/bin

mkdir /mnt/initrd/sys

mkdir /mnt/initrd/dev

mkdir /mnt/initrd/proc

Grab busybox and create the symbolic links

pushd /mnt/initrd/bin

cp /usr/lib/initramfs -tools/bin/busybox .

ln -s busybox ash

ln -s busybox mount

ln -s busybox echo

ln -s busybox ls

ln -s busybox cat

ln -s busybox ps

ln -s busybox dmesg

ln -s busybox sysctl

popd

Grab the necessary dev files

pushd /mnt/initrd/dev

cp -a /dev/console /mnt/initrd/dev

cp -a /dev/ram0 /mnt/initrd/dev

#ln -s ram0 ramdisk #optional

cp -a /dev/null /mnt/initrd/dev

#cp -a /dev/tty1 /mnt/initrd/dev #optional

#cp -a /dev/tty2 /mnt/initrd/dev #optional

popd

Equate sbin with bin

pushd /mnt/initrd

ln -s bin sbin

popd

Create the init file

cat >> /mnt/initrd/linuxrc << EOF

#!/ bin/ash

echo

echo "Simple initrd is active"

echo

mount -t proc /proc /proc

mount -t sysfs none /sys

/bin/ash --login

EOF

chmod +x /mnt/initrd/linuxrc

Finish up...

umount /mnt/initrd

rm -r /mnt/initrd

gzip -9 /tmp/ramdisk.img

cp /tmp/ramdisk.img.gz /home/ward/bdproject/initrd/ramdisk.img.gz

To create an initrd, begin by creating an empty file, using /dev/zero (a stream of zeroes) as input
writing to the ramdisk.img file. The resulting file is 4MB in size (4000 1K blocks). Then use the
mke2fs command to create an ext2 (second extended) file system using the empty file. Now that this
file is an ext2 file system, mount the file to /mnt/initrd using the loop device. At the mount point,
you now have a directory that represents an ext2 file system that you can populate for your initrd.
Much of the rest of the script provides this functionality.

The next step is creating the necessary subdirectories that make up your root file system: /bin, /sys,
/dev, and /proc. Only a handful are needed (for example, no libraries are present), but they contain
quite a bit of functionality.

20

To make your root file system useful, use BusyBox. This utility is a single image that contains many
individual utilities commonly found in Linux systems (such as ash, awk, sed, insmod, and so on). The
advantage of BusyBox is that it packs many utilities into one while sharing their common elements,
resulting in a much smaller image. This is ideal for embedded systems. Copy the BusyBox image from
its source directory into your root in the /bin directory. A number of symbolic links are then created
that all point to the BusyBox utility. BusyBox figures out which utility was invoked and performs that
functionality. A small set of links are created in this directory to support your init script (with each
command link pointing to BusyBox).

The next step is the creation of a small number of special device files. I copy these directly from my
current /dev subdirectory, using the -a option (archive) to preserve their attributes.

The penultimate step is to generate the linuxrc file. After the kernel mounts the RAM disk, it searches
for an init file to execute. If an init file is not found, the kernel invokes the linuxrc file as its
start-up script. You do the basic setup of the environment in this file, such as mounting the /proc file
system. In addition to /proc, I also mount the /sys file system and emit a message to the console.
Finally, I invoke ash (a Bourne Shell clone) so I can interact with the root file system. The linuxrc
file is then made executable using chmod.

Finally, your root file system is complete. It’s unmounted and then compressed using gzip. The
resulting file (ramdisk.img.gz) is copied to the your ~/bdproject/initrd subdirectory so it can be
loaded via GRUB.

To build the initial RAM disk, you simply invoke mkird, and the image is automatically created and
copied to ~/bdproject/initrd.

21

6 Creating a floppy boot disk

Lack of time for experimenting prevented me from creating a kernel small enough to fit on a floppy. I
did manage to put a small kernel image (downloaded from the Internet) on a floppy. However, since I
did not extensively experiment with this, I will not describe here how to create a floppy boot disk.

Instead, I will continue with a very similar approach: creating a CD-ROM bootdisk. The advantage of
a CD-ROM boot disk is obviously that the kernel size doesn’t need to be as small as it has to be for
fitting on a floppy. Therefore, the next chapter will explore how this is done.

22

7 Creating a CD-ROM boot disk

If you have followed the steps in chapter 3 and 5, you now have two files ready: your kernel and your
initrd image.

This chapter will detail how to create a bootable CD-ROM from these two files. For this, we will need
to introduce GRUB, the Grand Unified Bootloader. Also, to save on CD-ROMs and ease testing, we
will use Innotek Virtualbox, vitalisation software similar to VMWare and Microsoft VirtualPC.

7.1 GRUB

We have already discussed GRUB in section 2.2.2 and 3.6. We will briefly discuss it here again, since
we will need to put grub on our bootdisk.

Credit: The following text is an extract from “The GRUB manual”[4].

GRUB (GRand Unified Bootloader) is a bootloader. Briefly, a boot loader is the first software program
that runs when a computer starts. It is responsible for loading and transferring control to an operating
system kernel software (such as Linux or GNU Mach). The kernel, in turn, initialises the rest of the
operating system.

When booting with GRUB, you can use either a command-line interface, or a menu interface. Using
the command-line interface, you type the drive specification and file name of the kernel manually. In
the menu interface, you just select an OS using the arrow keys. The menu is based on a configuration
file which you prepare beforehand. While in the menu, you can switch to the command-line mode, and
vice-versa. You can even edit menu entries before using them.

The GRUB configuration files can be found, or are to be installed, in the directory \boot\grub\

7.2 Putting it all together

Now that we have a kernel and and initrd image, we are ready to create our bootable CD-ROM image,
which is the final file to be created. Listing 21 shows how this can be done.

Credit: This chapter is based on “Making a GRUB bootable CD-ROM”[10].

Listing 21: Utility (mkbootcd.sh) for creating a boot CD-ROM

#!/ bin/bash

Housekeeping ...

rm -fr /home/ward/bdproject/bootcd

rm -f /home/ward/bdproject/iso/bootcd.iso

#Set up required folders

cd /home/ward/bdproject

mkdir -p bootcd

mkdir -p bootcd/boot/grub

#Grab bootloader , kernel and initrd

cp /usr/lib/grub/i386 -pc/stage2_eltorito bootcd/boot/grub

cp /boot/vmlinuz bootcd/

cp initrd/ramdisk.img.gz /bootcd/

#Create .iso file ...

mkisofs -R -b boot/grub/stage2_eltorito -no -emul -boot -boot -load -size 4

-boot -info -table -o bootcd.iso bootcd

#Move to appropriate folder

mv bootcd.iso /iso/bootcd.iso

23

To create a bootable CD-ROM image, we begin by setting up a directory bootcd which will contain
all the files on the bootcd. This folder should also contain a directory /boot/grub which will hold a
stage2_eltorito boot image.

El Torito is a specification [3] for a bootable CD-ROM using BIOS functions, supported by our boot-
loader GRUB. For booting from a CD-ROM, GRUB uses a special Stage 2 called ‘stage2_eltorito’.
The only GRUB files you need to have in your bootable CD-ROM are this ‘stage2_eltorito’ and
optionally a config file ‘menu.lst’. You don’t need to use ‘stage1’ or ‘stage2’, because El Torito is quite
different from the standard boot process.

Once our folder structure has been set up, the eltorito boot image, the kernel and the initrd image are
copied to our bootcd folder. If required, you could copy additional files into the bootcd folder, which
will then be available if you mount the CD-ROM after booting.

The next step is creating an ISO9660 file system based on our bootcd folder, which can easily be done
with the command mkisofs (make iso file system).

The -R option is essentially for RockRidge extensions which allow us to have softlinks on the CD-ROM
and mixed case filenames. The -b options specifies the path and filename of the boot image to be
used when making an ”El Torito” bootable CD-ROM. The -no-emul-boot option prevents the image
from being treated as a floppy image. The -boot-load-size 4 bit is required for compatibility with
the BIOS on many older machines. When the -boot-info-table option is given, mkisofs will modify
the boot file specified by the -b option by inserting a 56-byte ”boot information table” at offset 8 in
the file. The -o bootcd.iso option specifies the output filename. And finally the bootcd at the end
specifies the folder to create your file system from. See the man pages of mkisofs for more information
(type man mkisofs at the terminal prompt).

This command produces a file named bootcd.iso, which then can be burned into a CD-ROM (or a
DVD), or loaded using a virtual machine (see below). mkisofs has already set up the disc to boot from
the boot/grub/stage2_eltorito file, so there is no need to setup GRUB on the disc.

You can use the device ‘(cd)’ to access a CD-ROM in your config file menu.lst (see below). This is not
required; GRUB automatically sets the root device to ‘(cd)’ when booted from a CD-ROM. It is only
necessary to refer to ‘(cd)’ if you want to access other drives as well.

7.3 Using Innotek Virtualbox

Figure 12: Innotek Virtualbox

Testing your boot disk (CD-ROM or floppy) becomes a lot more practical if you use virtualisation

24

software. Since VMware player is not (yet) compatible with Ubuntu 7.10, you can install Innotek
Virtualbox, an excellent open source alternative. See figure 12.

Installing Virtualbox can be easily done through the application manager of Ubuntu 7.10 (Applications > Add/Remove).

Once installed, create a new virtual machine. Select “Kernel 2.6” for the OS type. For the amount of
RAM, 64 Mb should suffice. A harddisk is not required.

Before starting up the virtual machine, you have to “insert” your CD-ROM (or floppy) by mounting it.
This can be done by selecting the virtual machine, clicking “Settings”, “CD/DVD-ROM”. Click “Mount
CD/DVD drive” and choose “ISO image file”. Then select the .iso file that you want to mount.

7.4 Testing your bootable image

With our bootcd.iso image ready, we are now finally able to test it.

Credit: This chapter is based upon “Linux initial RAM disk (initrd) overview”[8].

When you boot from the image, the GRUB command line will appear. You can now interact with GRUB
to define the specific kernel and initrd image to load. The kernel command allows you to define the
kernel file, and the initrd command allows you to specify the particular initrd image. When these are
defined, use boot to boot the kernel, as shown in listing 22.

Listing 22: GRUB command line

grub > root (cd)

grub > kernel /vmlinuz

grub > initrd /ramdisk.img.gz

grub > boot

NOTE: Should you not specify the initrd image, then your kernel will boot but terminate with a kernel
panic because it can not find the initrd image.

Figure 13: Booting your Linux kernel with your simple initrd

After the kernel starts, it checks to see if an initrd image is available (more on this in chapter 8), and
then loads and mounts it as the root file system. You can see the end of this particular Linux start-up
in figure 13. When started, the ash shell is available to enter commands. In this example, I explore the
root file system and demonstrate that you can write to the file system by touching a file (thus creating
it). Note here that the first process created is linuxrc (commonly init).

25

7.5 Adding a boot menu to GRUB

To avoid typing the same commands at the GRUB prompt each time you boot your customised system,
you can put these in a config file named menu.lst. This file provides you with a simple menu after
booting (see listing 23), and should be placed in the boot/grub folder in your bootdisk. The easiest
way to create this menu.lst file is by copying the existing file from the /boot/grub folder on your root
system. You can then modify it so that it contains the following:

Listing 23: Example configuration of menu.lst

title Standalone test kernel

root (cd)

kernel /vmlinuz -t15

initrd /ramdisk.img.gz

Figure 14: The grub boot menu (with only one entry)

Once you have a customised menu.lst file, put it in the boot/grub/ folder on your bootdisk before
running the mkisofs command (you might need to modify listing 21 if you want to use the mkbootcd.sh
script).

26

8 Booting with an initial RAM disk

Credit: The text below is an extract from “Linux initial RAM disk (initrd) overview”[8].

Now that you’ve seen how to build and use a custom initial RAM disk, this chapter explores how the
kernel identifies and mounts the initrd as its root file system. I walk through some of the major functions
in the boot chain and explain what’s happening.

The boot loader, such as GRUB, identifies the kernel that is to be loaded and copies this kernel image
and any associated initrd into memory. You can find much of this functionality in the ./init subdirectory
under your Linux kernel source directory.

After the kernel and initrd images are decompressed and copied into memory, the kernel is invoked.
Various initialisation is performed and, eventually, you find yourself in init/main.c:init() (subdir/-
file:function). This function performs a large amount of subsystem initialisation. A call is made here to
init/do_mounts.c:prepare_namespace(), which is used to prepare the namespace (mount the dev
file system, RAID, or md, devices, and, finally, the initrd). Loading the initrd is done through a call to
init/do_mounts_initrd.c:initrd_load().

The initrd_load() function calls init/do_mounts_rd.c:rd_load_image(), which determines the
RAM disk image to load through a call to init/do_mounts_rd.c:identify_ramdisk_image(). This
function checks the magic number of the image to determine if it’s a minux, etc2, romfs, cramfs, or gzip
format. Upon return to initrd_load_image, a call is made to init/do_mounts_rd:crd_load().
This function allocates space for the RAM disk, calculates the cyclic redundancy check (CRC), and
then uncompresses and loads the RAM disk image into memory. At this point, you have the initrd
image in a block device suitable for mounting.

Mounting the block device now as root begins with a call to init/do_mounts.c:mount_root(). The
root device is created, and then a call is made to init/do_mounts.c:mount_block_root(). From
here, init/do_mounts.c:do_mount_root() is called, which calls fs/namespace.c:sys_mount() to
actually mount the root file system and then chdir to it. This is where you see the familiar message
shown in figure 13: VFS: Mounted root (ext2 file system).

Finally, you return to the init function and call init/main.c:run_init_process. This results in a
call to execve to start the init process (in this case /linuxrc). The linuxrc can be an executable or
a script (as long as a script interpreter is available for it).

The hierarchy of functions called is shown in listing 24. Not all functions that are involved in copying
and mounting the initial RAM disk are shown here, but this gives you a rough overview of the overall
flow.

Listing 24: Hierarchy of major functions in initrd loading and mounting

init/main.c:init

init/do_mounts.c:prepare_namespace

init/do_mounts_initrd.c:initrd_load

init/do_mounts_rd.c:rd_load_image

init/do_mounts_rd.c:identify_ramdisk_image

init/do_mounts_rd.c:crd_load

lib/inflate.c:gunzip

init/do_mounts.c:mount_root

init/do_mounts.c:mount_block_root

init/do_mounts.c:do_mount_root

fs/namespace.c:sys_mount

init/main.c:run_init_process

execve

27

9 Conclusion and further work

The aim of this report was to provide both a hands-on tutorial to creating a small, customised operating
system, as well as a brief insight on the concept and technologies encountered to do so.

As I speak for myself, my expectations as stated in chapter 1 were certainly met. I have indeed learned
a lot about the boot process, file systems, shell scripting, the Linux directory tree and a general better
understanding of an operating system. The project was more challenging than expected: nonetheless
the huge amount of documentation available in the Internet, the quality varies greatly, thereby actually
decreasing the challenge to get accurate information. Many times, I was stuck in a dead end and had
to retreat to try other approaches.

I did not have enough time, however, to create a floppy boot disk. I opted for a CD-ROM boot disk.
Reducing the kernel size turned out to be a time-consumming task, involving a lot of experimentation.
Creating a CD-ROM bootdisk, does not put any practical constraints on the kernel size.

If there would have been more time for this project, I would have liked to explore a couple of things in
more detail, such as network booting, including a system call into the kernel and getting the kernel size
further down so that it would have fit on a floppy disk.

References

[1] Bash Shell Programming in Linux, www.arachnoid.com (on-line). 2006-03, printed 2007-12-29,
from
http://www.arachnoid.com/linux/shell_programming.html.

[2] Chapter 14 - Removing and installing software, Debian tutorial (on-line). 2006-06-17, printed
2007-12-29, from
http://www.debian.org/doc/manuals/debian-tutorial/ch-dpkg.html.

[3] El-torito, Bootable CD-ROM Format Specification, version 1.0, 1995-01-25.

[4] GRUB manual, 2005-05-26,from
http://orgs.man.ac.uk/documentation/grub/grub.html.

[5] How to Customise Your Ubuntu Kernel, the How-To Geek (on-line). Printed 2007-12-29, from
http://www.howtogeek.com/howto/ubuntu/how-to-customize-your-ubuntu-kernel/.

[6] Inside the Linux boot process, IBM developperWorks library (on-line). 2006-05-31, printed 2007-
12-29, from
http://www.ibm.com/developerworks/linux/library/l-initrd.html.

[7] The Linux Bootdisk HOW-TO, The Linux Documentation Project (on-line). 2002-01, version 4.5,
from
http://tldp.org/HOWTO/Bootdisk-HOWTO/.

[8] Linux initial RAM disk (initrd) overview, IBM developperWorks library (on-line). 2006-07-31,
printed 2007-12-29, from
http://www.ibm.com/developerworks/linux/library/l-linuxboot/.

[9] The Linux System Administrator’s Guide, Chapter 3 Overview of the Directory Tree The Linux
Documentation Project (on-line). version 0.9, from
http://www.tldp.org/LDP/sag/html/index.html.

[10] Making a GRUB bootable CD-ROM, GRUB manual (on-line). printed 2007-12-29, from
http://orgs.man.ac.uk/documentation/grub/grub_3.html#SEC11.

[11] Silberschatz, Galvin and Gagne. Operating System Concepts, Chapter 21.1 Linux History, pages
737-738. John Wiley & Sons, seventh edition, 2005

28

http://www.arachnoid.com /linux/shell_programming.html
http://www.debian.org/doc/manuals/debian-tutorial/ch-dpkg.html
http://orgs.man.ac.uk/documentation/grub/grub.html
http://www.howtogeek.com/howto/ubuntu/how-to-customize-your-ubuntu-kernel/
http://www.ibm.com/developerworks/linux/library/l-initrd.html
http://tldp.org/HOWTO/Bootdisk-HOWTO/
http://www.ibm.com/developerworks/linux/library/l-linuxboot/
http://www.tldp.org/LDP/sag/html/index.html
http://orgs.man.ac.uk/documentation/grub/grub_3.html#SEC11

[12] Using Debian Linux Packages, About debian Linux (on-line). printed 2007-12-30, from
!http://www.aboutdebian.com/packages.htm.

29

!http://www.aboutdebian.com/packages.htm

	Introduction
	Report set-up
	Required experience
	System setup

	The Linux operating system
	Overview
	Overview of the Linux boot process
	Stage 1 boot loader
	Stage 2 boot loader
	Kernel
	Init

	Overview of a basic Linux root file system

	Compiling a kernel
	Overview
	Preparation of your system
	Configuration of the kernel
	Creation of the kernel package
	Installation of the kernel package
	A word on GRUB
	Removal of a kernel package

	Creating a customised kernel
	Overview
	Loadable kernel modules
	A batch script for creating multiple kernel packages
	Making space on your file system

	Creating an initial RAM disk
	What's an initial RAM disk?
	Anatomy of the initrd
	Compressed cpio archive file
	Loop device

	Manually building a custom initial RAM disk

	Creating a floppy boot disk
	Creating a CD-ROM boot disk
	GRUB
	Putting it all together
	Using Innotek Virtualbox
	Testing your bootable image
	Adding a boot menu to GRUB

	Booting with an initial RAM disk
	Conclusion and further work

